Импульсные стабилизаторы на ШИМ-контроллере КР1114ЕУ4. Шим стабилизатор напряжения Схема стабилизатора напряжения и тока на шим

Жаропонижающие средства для детей назначаются педиатром. Но бывают ситуации неотложной помощи при лихорадке, когда ребенку нужно дать лекарство немедленно. Тогда родители берут на себя ответственность и применяют жаропонижающие препараты. Что разрешено давать детям грудного возраста? Чем можно сбить температуру у детей постарше? Какие лекарства самые безопасные?

Сам принцип широтно-импульсного моделирования (ШИМ) известен уже давно, но применяться в различных схемах он стал относительно недавно. Он является ключевым моментом для работы многих устройств, используемых в различных сферах: источники бесперебойного питания различной мощности, частотные преобразователи, системы регулирования напряжения, тока или оборотов, лабораторные преобразователи частоты и т.д. Он прекрасно показал себя в автомобилестроении и на производстве в качестве элемента для управления работой как сервисных, так и мощных электродвигателей. ШИМ-регулятор хорошо зарекомендовал себя при работе в различных цепях.

Давайте рассмотрим несколько практических примеров, показывающих, как можно регулировать скорость вращения электродвигателя с помощью электронных схем, в состав которых входит ШИМ-регулятор. Предположим, что вам необходимо изменить обороты электродвигателя в системе отопления салона вашего автомобиля. Достаточно полезное усовершенствование, не правда ли? Особенно в межсезонье, когда хочется регулировать температуру в салоне плавно. Двигатель постоянного тока, установленный в этой системе, позволяет изменять обороты, но необходимо повлиять на его ЭДС. С помощью современных электронных элементов эту задачу легко выполнить. Для этого в двигателя включается мощный полевой транзистор. Управляет им, как вы уже догадались, ШИМ- С его помощью можно менять обороты электродвигателя в широких пределах.

Каким образом работает ШИМ-регулятор в цепях В этом случае используется несколько иная схема регулирования, но принцип работы остается тем же. В качестве примера можно рассмотреть работу частотного преобразователя. Такие устройства широко применяются на производстве для регулирования скорости двигателей. Для начала трехфазное напряжение выпрямляется с помощью моста Ларионова и частично сглаживается. И только после этого подается на мощную двуполярную сборку или модуль на базе полевых транзисторов. Управляет же им собранный на базе микроконтроллера. Он и формирует контрольные импульсы, их ширину и частоту, необходимую для формирования определенной скорости электродвигателя.

К сожалению, помимо хороших эксплуатационных характеристик, в схемах, где используется ШИМ-регулятор обычно появляются сильные помехи в силовой цепи. Это связано с наличием индуктивности в обмотках электродвигателей и самой линии. Борются с этим самыми разнообразными схемными решениями: устанавливают мощные сетевые фильтры в цепях переменного тока или ставят обратный диод параллельно двигателю в цепях постоянного электропитания.

Такие схемы отличаются достаточно высокой надежностью в работе и являются инновационными в сфере управления электроприводами различной мощности. Они достаточно компактны и хорошо управляемы. Последние модификации таких устройств широко применяются на производстве.

5 кВА / 3-5 кВт 3 кВА / 2-3 кВт 2 кВА / 1,5-2 кВт
  • 1.5кВА / 0-1,5 кВт
  • Тип управления
  • Электромеханические
  • Релейные Тиристорные
  • Инверторные
  • Области применения
  • Для дома
  • Для дачи Для газового котла Для компьютера Для стиральной машины Для холодильника Для телевизора Промышленные (мощные)
  • Морозостойкие
  • Однофазные стабилизаторы Трехфазные стабилизаторы Инверторы Бензиновые генераторы Аккумуляторы Стойки коммутационные Сварочные аппараты Блоки контроля сети
  • Услуги
  • Новости

    Добавлена новая категория товаров - "Стойки коммутационные"
    13 июля 2016, 22:40

    Бесплатно

    Бесплатная доставка по Москве при сумме заказа от 10000 руб.

    В настоящее время на рынке широко представлены микросхемы (отечественные и импортные), которые реализуют различный набор функций ШИМ-управления для импульсных источников питания. Среди микросхем подобного типа КР1114ЕУ4 (производитель. ЗАО "Кремний-Маркетинг", Россия) достаточно популярна. Ее импортный аналог - TL494CN (Texas Instrument). Кроме того, она выпускается рядом фирм под разными наименованиями. Например, (Япония) выпускает микросхему IR3M02, (Корея) - КА7500, ф. Fujitsu (Япония) МВ3759.

    Микросхема КР1114ЕУ4 (TL494) представляет из себя ШИМ-контроллер импульсного источника питания, работающий на фиксированной частоте. Структура микросхемы приведена на рис.1.

    На базе данной микросхемы можно разрабатывать схемы управления для двухтактных и однотактных импульсных источников питания. Микросхема реализует полный набор функций ШИМ-управления: формирование опорного напряжения, усиление сигнала ошибки, формирование пилообразного напряжения, ШИМ-модуляцию, формирование 2-тактного выхода, защиту от сквозных токов и пр. Выпускается в 16-выводном корпусе, цоколевка представлена на рис.2.

    Встроенный генератор пилообразного напряжения требует для установки частоты только двух внешних компонентов - Rt и Ct.Частота генератора определяется по формуле:

    Для дистанционного выключения генератора можно внешним ключом замкнуть вход RT (вывод 6) на выход ИОНа (вывод 14) или замкнуть вход СТ (вывод 5) на общий провод.

    Микросхема имеет встроенный источник опорного напряжения (Uref=5,0 В), способный обеспечить вытекающий ток до 10 мА для смещения внешних компонентов схемы. Опорное напряжение имеет погрешность 5% в диапазоне рабочих температур от 0 до +70°С.

    Структурная схема импульсного понижающего стабилизатора приведена на рис.3.

    Регулирующий элемент РЭ преобразует входное постоянное напряжение UBX в последовательность импульсов определенной длительности и частоты, а сглаживающий фильтр (дроссель L1и конденсатор С1 преобразует их опять в выходное постоянное напряжение. Диод VD1 замыкает цепь тока через дроссель при выключении РЭ. С помощью обратной связи схема управления СУ управляет регулирующим элементом таким образом, что в итоге получается заданная стабильность выходного напряжения Uн.

    Стабилизаторы, в зависимости от способа стабилизации, могут быть релейными, с частотно-импульсной модуляцией (ЧИМ) и с широтноимпульсной модуляцией (ШИМ). В стабилизаторах с ШИМ частота импульсов (период) - величина постоянная, а их длительность обратно пропорциональна значению выходного напряжения. На рис.4 показаны импульсы с различным коэффициентом заполнения Кs.

    Стабилизаторы с ШИМ по сравнению со стабилизаторами других типов имеют следующие преимущества:

    Частота преобразования оптимальна (с точки зрения КПД), определяется внутренним генератором схемы управления и не зависит от каких-либо других факторов; частота пульсации на нагрузке является величиной постоянной, что удобно для построения подавляющих фильтров; возможна синхронизация частот преобразования неограниченного количества стабилизаторов, что исключает возникновение биений при питании нескольких стабилизаторов от общего первичного источника постоянного тока.

    Единственно, схемы с ШИМ отличаются сравнительно сложной схемой управления. Но разработка интегральных микросхем типа КР1114ЕУ4, содержащих внутри большую часть узлов СУ с ШИМ, позволяет значительно упростить импульсные стабилизаторы.

    Схема импульсного понижающего стабилизатора на базе КР1114ЕУ4 приведена на рис.5.

    Максимальное входное напряжение стабилизатора - 30 В, оно ограничено предельно допустимым напряжением сток-исток р-канального полевого транзистораVT1 (RFP60P03). Резистор R3 и конденсатор С5 задают частоту генератора пилообразного напряжения, которая определяется по формуле (1). С источника опорного напряжения (вывода 14) D1 через резистивный делитель R6-R7 на инвертирующий вход первого усилителя ошибки (вывод 2) подается часть образцового напряжения. Сигнал обратной связи через делитель R8-R9 подается на неинвертирующий вход первого усилителя ошибки (вывод 1) микросхемы. Выходное напряжение регулируется резистором R7.Резистор R5 и конденсатор С6 осуществляют частотную коррекцию первого усилителя.

    Следует отметить, что независимые выходные формирователи микросхемы обеспечивают работу выходного каскада как в двухтактном, так и в однотактном режимах. В стабилизаторе выходной формирователь микросхемы включен в однотактном режиме. Для этого вывод 13 включен на общий провод. Два выходных транзистора (их коллекторы - выводы 8, 11, эмиттеры - выводы 9, 10) включены по схеме с общим эмиттером и работают параллельно. При этом выходная частота равна частоте генератора. Выходной каскад микросхемы через резистивный делитель

    R1-R2 управляет регулирующим элементом стабилизатора - полевым транзистором VT1. Для более устойчивой работы стабилизатора по питанию микросхемы (вывод 12) включен LC-фильтр L1-C2-C3. Как видно из схемы, при применении КР1114ЕУ4 требуется сравнительное небольшое число внешних элементов. Уменьшить коммутационные потери и повысить КПД стабилизатора удалось благодаря использованию диода Шоттки (VD2) КД2998Б (Unp=0,54 В, Uобр=30 В, lпр=30 A, fmax=200кГц).

    Для защиты стабилизатора от перегрузки по току применен самовосстанавливающийся предохранитель FU1 MF-R400. Принцип работы подобных предохранителей основан на свойстве резко увеличивать свое сопротивление под воздействием определенного значения тока или температуры окружающей среды и автоматически восстанавливать свои свойства при устранения этих причин.

    Стабилизатор имеет максимальный КПД (около 90%) на частоте 12 кГц, а КПД при выходной мощности до 10 Вт (Uвых=10 В) достигает 93%.

    Детали и конструкция. Постоянные резисторы - типа С2-ЗЗН, переменные - СП5-3 или СП5-2ВА. Конденсаторы С1 С3, С5-К50-35; С4, С6, С7 -К10-17. Диод VD2 можно заменить любым другим диодом Шоттки с параметрами не хуже вышеуказанных, например, 20TQ045. Микросхема КР1114ЕУ4 заменяется на TL494LN или на TL494CN. Дроссель L1 - ДМ-0,1-80 (0,1 А, 80 мкГн). Дроссель L2 индуктивностью порядка 220 мкГн выполнен на двух сложенных вместе кольцевых магнитопроводах. МП-140 К24х13x6,5 и содержит 45 витков провода ПЭТВ-2 01,1 мм, уложенных равномерно в два слоя по всему периметру кольца. Между слоями проложены два слоя лакоткани. ЛШМС-105-0.06 ГОСТ 2214-78. Самовосстанавливающийся предохранитель типа MF-RXXX можно подобрать для каждого конкретного случая.

    Стабилизатор выполнен на макетной плате размерами 55x55 мм. Транзистор устанавливается на радиаторе площадью не менее 110 см2. При монтаже целесообразно разделить общий провод силовой части и общий провод микросхемы, а также минимизировать длину проводников (особенно силовой части). В налаживании стабилизатор при правильном монтаже не нуждается.

    Общая стоимость покупных радиоэлементов стабилизатора составила у меня порядка 10$, причем стоимость транзистора VT1 - 3...4$. Для снижения стоимости вместо транзистора RFP60P03 можно применить более дешевый RFP10P03, но, конечно, это несколько ухудшит технические характеристики стабилизатора.

    Структурная схема импульсного параллельного стабилизатора повышающего типа приведена на рис.6.

    В этом стабилизаторе регулирующий элемент РЭ, работающий в импульсном режиме, включен параллельно нагрузке Rh. Когда РЭ открыт, ток от входного источника (Ubx) протекает через дроссель L1, запасая в нем энергию. Диод VD1 при этом отсекает нагрузку и не позволяет конденсатору С1 разряжаться через открытый РЭ. Ток в нагрузку в этот промежуток времени поступает только от конденсатора С1 В следующий момент, когда РЭ закрыт, ЭДС самоиндукции дросселя L1 суммируется с входным напряжением, и энергия дросселя отдается в нагрузку. При этом выходное напряжение будет больше входного. В отличие от понижающего стабилизатора (рис.1), здесь дроссель не является элементом фильтра, а выходное напряжение становится больше входного на величину, которая определяется индуктивностью дросселя L1 и скважностью импульсов регулирующего элемента РЭ.

    Принципиальная схема импульсного повышающего стабилизатора показана на рис.7.

    В нем применены, в основном, те же электронные компоненты, что и в схеме понижающего стабилизатора (рис.5).

    Уменьшить пульсации можно за счет увеличения емкости выходного фильтра. Для более "мягкого" запуска между общим проводом и неинвертирующим входом первого усилителя ошибки (выводом 1) включен конденсатор С9.

    Постоянные резисторы - С2-ЗЗН, переменные - СП5-3 или СП5-2ВА.

    Конденсаторы С1 С3, С5, С6, С9 - К50-35; С4, С7, С8 - К10-17. Транзистор VT1 - IRF540 (n-канальный полевой транзистор с Uси=100 В, lc=28 A, Rси=0,077 Ом) - устанавливается на радиаторе с площадью эффективной поверхности не менее 100 см2. Дроссель L2 - такой же, как и в предыдущей схеме.

    Первое включение стабилизатора лучше сделать при небольшой нагрузке (0,1...0,2 А) и минимальном выходном напряжении. Затем медленно увеличивать выходное напряжение и ток нагрузки до максимальных значений.

    Если повышающий и понижающий стабилизаторы будут работать от одного входного напряжения Uin то их частоту преобразования можно засинхронизировать. Для этого (если понижающий стабилизатор будет ведущим, а повышающий ведомым) в повышающем стабилизаторе нужно удалить резистор R3 и конденсатор С7, замкнуть выводы 6 и 14 микросхемы D1, а вывод 5 D1 соединить с выводом 5 микросхемы D1 понижающего стабилизатора.

    В стабилизаторе повышающего типа дроссель L2 не участвует в сглаживании пульсации выходного постоянного напряжения, поэтому для качественной фильтрации выходного напряжения необходимо применять фильтры с достаточно большими значениями L и С. Это, соответственно, приводит к увеличению массы и габаритов фильтра и устройства в целом. Поэтому удельная мощность понижающего стабилизатора больше, чем повышающего.

    С микросхемой NE555 (аналог КР1006) знаком каждый радиолюбитель. Её универсальность позволяет конструировать самые разнообразные самоделки: от простого одновибратора импульсов с двумя элементами в обвязке до многокомпонентного модулятора. В данной статье будет рассмотрена схема включения таймера в режиме генератора прямоугольных импульсов с широтно-импульсной регулировкой.

    Схема и принцип её работы

    С развитием мощных светодиодов NE555 снова вышла на арену в роли регулятора яркости (диммера), напомнив о своих неоспоримых преимуществах. Устройства на её основе не требуют глубоких знаний электроники, собираются быстро и работают надёжно.

    Известно, что управлять яркостью светодиода можно двумя способами: аналоговым и импульсным. Первый способ предполагает изменение амплитудного значения постоянного тока через светодиод. Такой способ имеет один существенный недостаток - низкий КПД. Второй способ подразумевает изменение ширины импульсов (скважности) тока с частотой от 200 Гц до нескольких килогерц. На таких частотах мерцание светодиодов незаметно для человеческого глаза. Схема ШИМ-регулятора с мощным выходным транзистором показана на рисунке. Она способна работать от 4,5 до 18 В, что свидетельствует о возможности управления яркостью как одного мощного светодиода, так и целой светодиодной лентой. Диапазон регулировки яркости колеблется от 5 до 95%. Устройство представляет собой доработанную версию генератора прямоугольных импульсов. Частота этих импульсов зависит от ёмкости C1 и сопротивлений R1, R2 и определяется по формуле: f=1/(ln2*(R1+2*R2)*C1), Гц

    Принцип действия электронного регулятора яркости заключается в следующем. В момент подачи напряжения питания начинает заряжаться конденсатор по цепи: +Uпит – R2 – VD1 –R1 –C1 – -U пит. Как только напряжение на нём достигнет уровня 2/3U пит откроется внутренний транзистор таймера и начнется процесс разрядки. Разряд начинается с верхней обкладки C1 и далее по цепи: R1 – VD2 –7 вывод ИМС – -U пит. Достигнув отметки 1/3U пит транзистор таймера закроется и C1 вновь начнет набирать ёмкость. В дальнейшем процесс повторяется циклически, формируя на выводе 3 прямоугольные импульсы.

    Изменение сопротивления подстроечного резистора приводит к уменьшению (увеличению) времени импульса на выходе таймера (вывод 3), и как следствие, уменьшается (увеличивается) среднее значение выходного сигнала. Сформированная последовательность импульсов через токоограничивающий резистор R3 поступает на затвор VT1, который включен по схеме с общим истоком. Нагрузка в виде светодиодной ленты или последовательно включенных мощных светодиодов включается в разрыв цепи стока VT1.

    В данном случае установлен мощный MOSFET транзистор с максимальным током стока 13А. Это позволяет управлять свечением светодиодной ленты длиной в несколько метров. Но при этом транзистору может потребоваться теплоотвод.

    Блокирующий конденсатор C2 исключает влияние помех, которые могут возникать по цепи питания в моменты переключения таймера. Величина его ёмкости может быть любой в пределах 0,01-0,1 мкФ.

    Плата и детали сборки регулятора яркости

    Односторонняя печатная плата имеет размер 22х24 мм. Как видно из рисунка на ней нет ничего лишнего, что могло бы вызвать вопросы.

    После сборки схема ШИМ-регулятора яркости не требует наладки, а печатная плата легка в изготовке своими руками. В плате, кроме подстроечного резистора, используются SMD элементы.

    • DA1 – ИМС NE555;
    • VT1 – полевой транзистор IRF7413;
    • VD1,VD2 – 1N4007;
    • R1 – 50 кОм, подстроечный;
    • R2, R3 – 1 кОм;
    • C1 – 0,1 мкФ;
    • C2 – 0,01 мкФ.

    Транзистор VT1 должен подбираться в зависимости от мощности нагрузки. Например, для изменения яркости одноваттного светодиода достаточно будет биполярного транзистора с максимально допустимым током коллектора 500 мА.

    Управление яркостью светодиодной ленты должно осуществляться от источника напряжения +12 В и совпадать с её напряжением питания. В идеале регулятор должен питаться от стабилизированного блока питания, специально предназначенного для ленты.

    Нагрузка в виде отдельных мощных светодиодов запитывается иначе. В этом случае источником питания диммера служит стабилизатор тока (его еще называют драйвер для светодиода). Его номинальный выходной ток должен соответствовать току последовательно включенных светодиодов.

    Читайте так же

    Рис. 40

    Рис. 39

    Рис. 38

    Рис. 37

    Примечание - подробнее о самой микросхеме и принципе ее работы показа-но далее в параграфе 2.4.2. - ШИМ регулятор на ИС TL494.

    Импульсные стабилизаторы напряжения на ИС TL494.

    Пилообразное напряжение часто получают от отдельного устройства – генератора пилообразного напряжения (ГПН).

    Частота напряжения пилообразной формы определяется RC цепочкой и обычно f гпн = const , но, в случае необходимости, изменяя параметры RC можно устанавливать (регулировать) необходимую частоту.

    Известно, что частота переключения коммутирующего устройства – транзисторы VT 2, VT 3 в ИСН с ШИМ постоянна (она задается ГПН). Под влиянием дестабилизирующих факторов изменяется напряжение на внешнем резисторе R 9 и, соответственно, на выходе дифференциального усилителя U упт, что приводит к изменению длительности открытого состояния транзисторов VT 2, VT 3 регулятора, а напряжение на выходе импульсного стабилизатора остается неизменным.

    3.7.3 ШИМ-контроллеры серии TL494

    В настоящее время на рынке широко представлены микросхемы (отечественные и импортные), которые реализуют различный набор функций ШИМ-управления для конкретных задач. Хорошо себя зарекомендовали ШИМ-контроллеры серии TL494 (отечественный аналог КР1114ЕУ4). Их подробное описание приведено в . Данные микросхемы обеспечивают расширенные возможности при разработке ИВЭП и реализуют полный набор функций ШИМ-управления. Микросхема осуществляет формирование опор-ного напряжения, усиление сигнала ошибки, формирование пилообразного напряжения, ШИМ-модуляцию, формирование двухтактного выхода, защиту от сквозных токов и перегрузок, внешнюю синхронизацию, широкий диапазон регулировки, обеспечивает мягкий запуск и возможность внешнего включения.

    основные параметры и характеристики микросхемы TL494:

    · напряжение питания Uсс – 7…40 В;

    · напряжение на коллекторах закрытых ключевых транзисторов не более 40 В;

    · ток выходных ключевых транзисторов – 250 мА;

    · опорное напряжение – 5 В ± 5%;

    · общая мощность рассеивания в непрерывном режиме (корпусDIP-16.Т а <25 ºС) – не более 1000 мВт;

    · рабочий диапазон температур окружающей среды:

    · с суффиксом L – от −25…+85 ºС;

    · с суффиксом С – от 0…+70 ºС.

    · ток через вывод обратной связи – не более 0,3 мА;

    · емкость времязадающего конденсатора Ст – 0,047…10000 нФ;

    · сопротивление времязадающего резистора – 1,8..500 кОм;

    · частота генератора – 1…300 кГц;

    · ток потребления микросхемы – не более 20 мА;


    · фронт импульса выходного тока – не более 200 нс;

    · спад импульса выходного тока – не более 100 нс.

    Кроме того, независимые выходные формирователи микросхемы на транзисторах обеспечивают возможность работы выходного каскада по схеме с общим эмиттером или по схеме эмиттерного повторителя.

    3.1.1.Принципиальная схема импульсного понижающего
    стабилизатора на ИС TL494

    В предлагаемом на рис. 37 стабилизаторе максимальное входное напряжение составляет 30 В, оно ограничено максимально допустимым напряжением сток-исток р-канального полевого транзистора VT 1 RFP60P03 фирмы Mitsubishi Electric . Резистор R 3 и конденсатор С 6 задают частоту внутреннего генератора пилообразного напряжения, она определяется по формуле

    На рис. 37 указано: VD 1-КД212А; VD 2-2Д2998Б;1-RFP60PO3; C 1, C2-2200 мк×40 В; C 3-10 мк×63В; C 4-0,1мк; C 5-1000 мк×25В; C 6-4700; C 7-0,1 мк; FU 1-MF R400; R 1-200 Ом, 0,125 Вт; R 2-510 Ом, 0,5 Вт; R 3-30 кОм, 0,125 Вт; R 4-1 М, 0,125 Вт; R 5-47 кОм, 0,125 Вт; R 6-4,7 кОм, 0,125 Вт; R 7-4,7 кОм; R 8-5,6 кОм, 0,125 Вт; R 9-1 кОм, 0,125 Вт; L 1-80 мкГн; I-6 А; U вх =24 В; U вых =0…11 В.

    С источника опорного напряжения (вывод 14) через резистивный делитель R 6, R 7 на инвертирующий вход усилителя ошибки № 1 (вывод 2) подается часть образцового напряжения. Сигнал обратной связи через делитель R 8, R 9 подают на не инвертирующий вход усилителя ошибки (вывод 1) микросхемы. Выходное напряжение регулируется резистором R 7. Резистор R 5 и конденсатор С 7 осуществляют частотную коррекцию усилителя ошибки.

    Следует отметить, что независимые выходные формирователи микросхемы обеспечивают работу выходного каскада как в двухтактном, так и в однотактном режимах. В стабилизаторе выходной формирователь микросхемы включен в однотактном режиме. Для этого вывод 13 соединен с общим проводом. Два выходных транзистора (коллекторы – выводы 8, 11; соответственно эмиттеры – выводы 9, 10) включены по схеме с общим эмиттером и работают параллельно. При этом выходная частота равна частоте генератора. Выходной каскад микросхемы через резистивный делитель R 1, R 2 управляет ключевым элементом КЭ стабилизатора – полевым транзистором VT 1. В цепи питания микросхемы (вывод 12). Для подавления различных высокочастотных помех и более устойчивой работы стабилизатора в целом включен LC -фильтр на элементах L 1, C 3, C 4. Как видно из принципиальной схемы стабилизатора, при применении микросхемы TL494 требуется сравнительное небольшое число внешних элементов.

    Для защиты стабилизатора от перегрузки по току применен самовосстанавливающийся предохранитель FU 1 MF-R400 фирмы Bourns. Принцип работы подобных предохранителей основан на свойстве резко увеличивать свое сопротивление при превышении определенного порогового значения тока или температуры окружающей среды и автоматически восстанавливать свои свойства при устранении этих причин. Ниже приведены технические характеристики вышеуказанного предохранителя:

    · максимально рабочее напряжение – 30 В;

    · максимальный ток, которые не приводит к изменению параметров предохранителя – 4 А;

    · ток, который приводит к скачку сопротивления – 8 А;

    · диапазон рабочей температуры – от −40 до +85 ºС.

    Уменьшить коммутационные потери и повысить КПД стабилизатора удалось благодаря использованию диода Шоттки (VD 2) КД2998Б с параметрами:

    · постоянное прямое напряжение – 0,54 В;

    · средний прямой ток – 30 А;

    · диапазон частот без снижения электрических параметров–10..200 кГц;

    · импульсное обратное напряжение – 30 В.

    Основные технические характеристики понижающего стабилизатора (рис.37)

    · Входное напряжение – 24 В;

    · Выходное напряжение – 0…11 В;

    · Максимальный ток нагрузки – 6 А;

    · Амплитуда пульсаций выходного напряжения – не более 100 мВ;

    · Нестабильность выходного при изменении тока нагрузки и температуры окружающей среды – не более 1%;

    · Среднее значение КПД при максимальном токе нагрузки во всем интервале выходного напряжения – порядка 90 %;

    Экспериментально было установлено, что стабилизатор имеет максимальный КПД (≈90 %) на частоте 12 кГц, но при выходной мощности порядка 40 Вт наблюдается едва заметный свист . Свист пропадает, если увеличить частоту преобразования до 20 кГц (при снижении КПД на 2…3 %). КПД при выходной мощности до 10 Вт (U вых = 10 В) достигает 93 %.

    Дроссель L2 намотан на двух сложенных вместе кольцевых магнитопроводах МП-140 К24×13×6,5 и содержит 45 витков провода ПЭТВ-2 диаметром 1,1 мм, уложенных равномерно в два слоя по всему периметру кольца. Между слоями следует проложить два слоя лакоткани ЛШМС-105-0,06 ГОСТ 2214-78. Индуктивность дросселя – 220 мкГн. Резисторы – С2-33Н. Конденсаторы С 1, С 2, С 3, С 5 – К50-35, С 4, С 6, С 7 – К10-17. Переменные резисторы – СП5-3 или СП5-2ВА. Микросхему TL494CN можно заменить на TL494LN или КР1114ЕУ4. Дроссель L 1 – ДМ-0,1 индуктивностью 80 мкГн. Самовосстанавливающийся предохранитель серии MF-R можно подобрать для каждого конкретного случая. Диод VD 2 можно заменить любым другим диодом Шоттки с параметрами не хуже вышеуказанных, например 20TQ045.

    В стабилизаторе узел защиты от перегрузки по току можно выполнить по-другому. В TL494 есть усилитель ошибки № 2 (инвертирующий вход/выход 15, не инвертирующий вход/выход 16). Выходы обоих усилителей ошибки имеют активный высокий уровень и объединены по ИЛИ на не инвертирующем входе ШИМ-компаратора. В такой конфигурации усилитель, требующий минимального времени для включения выхода, является доминирующим в петле усиления.

    Фрагмент схемы стабилизатора с узлом защиты от перегрузки по току приведен на рис. 38 .

    Параллельные резисторы R 12-R 14 выполняющие роль датчика тока, включены последовательно с нагрузкой. Напряжение с датчика тока подается на не инвертирующий вход (вывод 16) усилителя ошибки № 2. Пороговое значение тока (напряжение на инвертирующем входе усилителя, вывод 15) в нагрузке задается делителем R 10, R 11.

    На рис. 38 указано: VD 2-2Д2998Б; C 5-1000 мк×25В; C 6-4700; C 7-0,1 мк; R 3-30 кОм, 0,125 Вт; R 4-1 М, 0,125 Вт; R 5-47 кОм, 0,125 Вт; R 6-4,7 кОм, 0,125 Вт; R 7-4,7 кОм; R 8-5,6 кОм, 0,125 Вт; R 9-1 кОм, 0,125 Вт; R 10-4,7 кОм, 0,125 Вт; R 11-270 Ом; R 12, R 13, R 14-0,1 кОм, 1 Вт; L 1-80 мкГн; I-6 А; U вых = 0…11 В.

    Как только ток в нагрузке превысит установленное пороговое значение и усилитель ошибки №2 микросхемы будет доминирующим в петле управления, стабилизатор начнет работать в режиме стабилизации тока. Если ток нагрузки будет меньше порогового значения, стабилизатор вновь перейдет в режим стабилизации напряжения. Для уменьшения потерь мощности датчик тока выполнен с минимальным сопротивление 0,03 Ом: при максимальном токе нагрузке 6 А рассеиваемая мощность на датчике
    составляет всего 1,08 Вт. Резисторы R 12...R 14 – типа С5-16МВ 1 Вт, 0,1 Ом ± 1%. Резистор R 11 – СП5-3 или СП5-2ВА. При необходимости для уменьшения потерь можно еще уменьшить сопротивление датчика тока.

    Стабилизатор выполнен на плате с размерами 55×55 мм. При монтаже целесообразно разделить общий провод силовой части стабилизатора и общий провод микросхемы и соединить их у выхода стабилизатора, а также минимизировать длину проводников (особенно силовой части).

    Транзистор устанавливают на радиатор с площадью эффективной поверхности не менее 110 см 2 . В налаживании стабилизатор при правильном монтаже не нуждается. В стабилизаторе с узлом защиты от перегрузки по току (рис. 38) необходимо выставить напряжение на выводе 15 микросхемы, которое вычисляется по формуле: U 15 = I×R, где I – максимальный ток нагрузки; R – сопротивление датчика тока.

    Вначале без нагрузки резистором R 11 необходимо выставить требуемое напряжение U для максимального тока нагрузки (для тока I пор = 8 А, U = 0,24 В). Первое включение лучше сделать при нагрузке 0,2…0,4 А. Затем медленно увеличить выходное напряжение до максимального значения и далее, увеличивая ток нагрузки, проверить переход стабилизатора в режим стабилизации тока.

    Вместо транзистора RFP60P03, можно применить более дешевый RFP10P03, но применение более дешевой элементной базы может привести к ухудшению технических характеристик стабилизатора.

    3.1.2.Принципиальная схема импульсного повышающего
    стабилизатора на ИС TL494

    В некоторых случаях необходимо, чтобы выходное напряжение стабилизатора было выше входного. На рис. 39 приведена структурная схема импульсного параллельного стабилизатора повышающего типа.

    В данном импульсном стабилизаторе при открытом ключевом элементе КЭ ток от источника U вх протекает через дроссель L 1, запасая в нем энергию. Диод VD 1 при этом закрыт. Ток в нагрузку в этот промежуток времени поступает только от конденсатора С 1 .

    На рис. 39 указано: VD 1-КД212А; VD 2-2Д2998Б;1-IRFP540; C 1, C2-2200 мк×40 В;C 3-10 мк×63В; C 4-0,1мк; C 5, C 6-3300 мк×63 В; C 7-4700; С 8-0,1 мк; С 9-1000 мк×25 В; FU 1-MF R400; R 1-1 кОм, 0,25 Вт; R 2-750 Ом, 0,25 Вт; R 3-30 кОм, 0,125 Вт; R 4-1 М, 0,125 Вт; R 5-47 кОм, 0,125 Вт; R 6-4,7 кОм, 0,125 Вт; R 7-4,7 кОм; R 8-150 кОм, 0,125 Вт; R 9-4,7 кОм, 0,125 Вт; L 1-80 мкГн; I-1,4 А; U вх =24 В; U вых =26,5…50 В.

    В следующий момент, когда КЭ закрывается, энергия дросселя L 1 отдается в нагрузку. При этом выходное напряжение будет больше входного. В отличие от понижающего стабилизатора (рис. 38 ) здесь дроссель не является элементом фильтра, а выходного напряжение становится больше входного на величину, которая определяется индуктивностью дросселя L 1 и скважностью работы ключевого элемента КЭ.

    В стабилизаторе на рис. 39 применены, в основном, те же радиоэлементы, что и в ранее рассмотренном.

    Основные технические характеристики повышающего стабилизатора:

    · Входное напряжение – 24 В;

    · Выходное напряжение – 26,5…50 В;

    · Максимальный ток нагрузки (при U вых = 50 В) – 1,4 А;

    · Амплитуда пульсаций выходного напряжения – не более 200 мВ;

    · Нестабильность выходного при изменении тока нагрузки и температуры окружающей среды – 1,5 %;

    · Среднее значение КПД при максимальном токе нагрузки во всем интервале выходного напряжения – порядка 9,2 %;

    · Частота преобразования – 15 кГц;

    · Диапазон рабочей температуры – от −25 до +85 ºС;

    · Амплитуда пульсаций выходного напряжения стабилизатора при максимальной нагрузке – порядка 200 мВ.

    Уменьшить пульсации можно, увеличив емкость выходного фильтра. Для более «мягкого» запуска между общим проводом и не инвертирующим входом усилителя ошибки № 1 (вывод 1) включен конденсатор С 9. Для защиты стабилизатора от перегрузки по току можно применить функциональный узел, приведенный на рис. 38.

    Дроссель L 2 такой же, как и в схеме понижающего стабилизатора, VT 1 – n- канальный полевой транзистор IRF540 с параметрами: U си = 100 В, I c и =28 А, R си = 0,077 Ом (максимальные значения). Резисторы – С2-33Н. Конденсаторы С 1, С 2, С 3, С 5, С 6, С 8, С 9 – К50-35; С 4, С 7, С 8 – К10-17. Переменные резисторы – СП5-3 или СП5-2ВА. Транзистор VT 1 следует установить на радиатор с площадью эффективной поверхности не менее 100 см 2 . Можно применить более дешевый n-канальный полевой транзистор, конечно, с некоторым ухудшением технических характеристик стабилиза-тора. Первое включение лучше сделать при небольшой нагрузке 0,1…0,2 А и минимальном выходном напряжении, затем медленно увеличивать выходное напряжение и ток нагрузки до максимальных значений.

    Если повышающий и понижающий стабилизаторы будут работать от одного источника напряжения, то их частоту преобразования можно засинхронизировать. В приведена схема синхронизации двух микросхем TL494. Для этого в ведомом стабилизаторе нужно удалить времязадающие резисторы и конденсатор и замкнуть выводы 6 и 14 микросхемы, а выводы 5 микросхем обоих стабилизаторов соединить между собой.

    В стабилизаторе повышающего типа дроссель L 2 не участвует в сглаживании пульсации выходного постоянного напряжения. В стабилиза-торах повышающего типа для качественной фильтрации выходного постоянного напряжения необходимо применять выходные фильтры с достаточно большими значениями L и С . Это приводит к увеличению массы и габаритов фильтра и устройства в целом. Поэтому удельная мощность понижающего стабилизатора больше, чем повышающего.

    3.1.3. Принципиальная схема импульсного
    инвертирующего стабилизатора на ИС TL494

    Принципиальная схема импульсного инвертирующего стабилизатора приведена на рис. 40. Этот ИСН выполнен по схеме, приведенной в главе 2, §2.2.3.

    Также, как и в повышающем стабилизаторе, дроссель при открытом КЭ накапливает энергию, а при закрытом – отдает ее в нагрузку, однако за счет другого порядка соединения элементов стабилизатор обладает свойством инвертирования полярности выходного напряжения относительно входного напряжения.

    На рис. 40 указано: VD 1-КД212А; VD 2-2Д2998Б;1-RFP60PO3; C 1, C2-2200 мк×40 В;C 3-10 мк×63В; C 4-0,1мк; C 5-1000 мк×25В; C 6-4700; C 7-220 мк×40 В; С 8-0,1 мк;FU 1-MF R400; R 1-200 Ом, 0,125 Вт; R 2-510 Ом, 0,5 Вт; R 3-1 кОм, 0,125 Вт; R 4-4,7 кОм, 0,125 Вт; R 5-30 кОм, 0,125 Вт; R 6-1 МОм, 0,125 Вт; R 7-47 кОм; R 8-1 кОм, 0,125 Вт; R 9-10 кОм, 0,125 Вт; R 10-1 кОм, 0,125 Вт; R 11-5,6 кОм, 0,125 Вт; L 1-80 мкГн; I-4,5 А;U вх =24 В; U вых =0…11 В.

    В инвертирующем стабилизаторе использованы, в основном, те же электронные компоненты, что и в ранее описанных.

    Основные технические характеристики инвертирующего стабилизатора:

    · Входное напряжение – 24 В;

    · Выходное напряжение – 11 В;

    · Максимальный ток нагрузки – 4,5 А;

    · Амплитуда пульсаций выходного напряжения – не более 150 мВ;

    · Нестабильность выходного при изменении тока нагрузки и температуры окружающей среды – 15 %;

    · Среднее значение КПД при максимальном токе нагрузки во всем интервале выходного напряжения – 80%;

    · Частота преобразования – 15 кГц;

    · Диапазон рабочей температуры – от −25 до +85 ºС.

    Для того, чтобы исключить бросок входного тока, особенно при работе на большую нагрузку, в стабилизаторе реализован «мягкий» запуск за счет введения R 3 и С 5.

    Транзистор VT 1 следует установить на радиатор с площадью эффек-тивной поверхности не менее 140 см 2 . Диод VD 2 также устанавливается на радиатор с площадью эффективной поверхности не мене 10 см 2 .

    Входное напряжение стабилизаторов можно уменьшить или увеличить, если учесть все вышеизложенные требования к каждому стабилизатору, но при этом ток нужно вновь рассчитать делитель R 1, R 2, чтобы ток делителя и напряжение исток-затвор транзистораVT 1 не изменились.?????

    Микросхема импульсного управления КР142ЕП1 обеспечивает работу ИСН в основном в релейном двухпозиционном режиме, но в ИС предусмотрена также возможность для создания стабилизатора напряжения с широтно-импульсной модуляцией.

    Например, если по тем или иным причинам требуется, чтобы работа порогового устройства была синхронизирована с частотой какого-либо внешнего устройства, то его синхронизирующий сигнал подают на выв. 14 и 15 ИС. Часто в качестве подобного устройства используют генератор прямоугольных импульсов - задающий генератор. Переменное напряжение прямоугольной формы такого генератора с помощью дифференцирующей RC цепочки преобразуется в пилообразное напряжение U пил. В качестве резистора в этом случае используется R 10 микросхемы, а внешний конденсатор применяется небольшой емкости.

    В качестве узла ввода этого сигнала используются диоды VD 3...VD 6, включенные между дифференциальным усилителем и триггером Шмитта. Таким образом, на резисторе R 10 осуществляется сравнение двух напряжений – первое пропорционально изменению напряжения на нагрузке(как и в ИСН с РЭ) и снимается оно с коллектора VT 11 дифференциального усилителя постоянного тока U упт, а второе –напряжение пилообразной формы U пил. В результате сравнения этих напряжений выделяется сигнал рассогласования, который подается на инвертирующий каскад VT 7.

    Напряжение пилообразной формы должно иметь размах, достаточный для перевода VT 7 в состояние насыщения. Последний в открытом состоянии работает в режиме, близком к насыщению. Задержка моментов времени, в которые VT 7 выходит из насыщения, по отношению к переднему фронту пилообразного напряжения зависит от того, насколько открыты транзисторы VT 7, VT 8. Если транзисторы почти заперты, а среднее напряжение между их базой и эмиттером, задаваемое потенциалом коллектора VT 8, мало, то оно сравняется с линейно уменьшающимся напряжением на выходе выпрямителя только в конце такта.

    При возрастании потенциала на коллекторе VT 11(т.е. при увеличении напряжения на нагрузке) растет и напряжение U упт. Такому напряжению соответствует большая пауза между импульсами напряжения (меньшая длительность импульсов напряжения), снимаемыми с общей эмиттерной нагрузки транзисторов VT 7, VT 8 - R 9(U Б VT 6) микросхемы.

    Транзисторы VT 6, VT 5, VT 4являются усилителями импульсов, снимаемых с резистора R 9. Усиленные импульсы с коллектора VT 4 через внешний делитель напряжения (R 6, R 3) подаются на базу VT 3, являющегося одним из транзисторов ключа, входящего в состав ИС. Этот ключ (VT 2, VT 3) управляет в данной схеме ИСН внешним силовым ключом, выполненным также в виде составного транзистора (VT 2, VT 3). Таким образом, при увеличении, например, напряжения питания на входе ИСН напряжение U н = (t и /T)U п на нагрузке останется неизменным так как уменьшилось время открытого состояния регулирующего транзистора силовой части.


    Поддержите проект — поделитесь ссылкой, спасибо!
    Читайте также
    «Сонник Больной приснился, к чему снится во сне Больной Видеть во сне другого человека больным «Сонник Больной приснился, к чему снится во сне Больной Видеть во сне другого человека больным Приснилось собственное отражение в зеркале? Приснилось собственное отражение в зеркале? Приснился ребенок во сне Приснился ребенок во сне