Виды и устройство регуляторов оборотов коллекторных двигателей. Регулятор оборотов коллекторного двигателя: устройство и изготовление своими руками Принципиальная схема регулятора оборотов двигателя

Жаропонижающие средства для детей назначаются педиатром. Но бывают ситуации неотложной помощи при лихорадке, когда ребенку нужно дать лекарство немедленно. Тогда родители берут на себя ответственность и применяют жаропонижающие препараты. Что разрешено давать детям грудного возраста? Чем можно сбить температуру у детей постарше? Какие лекарства самые безопасные?

Электродвигателя необходим для плавного разгона и торможения. Широкое применение получили такие устройства в промышленности. С их помощью изменяют скорость движения вращения вентиляторов. Двигатели на 12 Вольт используются в системах управления и автомобилях. Все видели переключатели, которыми изменяется скорость вращения вентилятора печки в машинах. Это один из типов регуляторов. Только он не предназначен для плавного запуска. Изменение скорости вращения происходит ступенчато.

Применение частотных преобразователей

В качестве регуляторов оборотов и 380В используются частотные преобразователи. Это высокотехнологичные электронные устройства, которые позволяют кардинально изменить характеристики тока (форму сигнала и частоту). В их основе находятся мощные полупроводниковые транзисторы и широтно-импульсный модулятор. Вся работа прибора управляется блоком на микроконтроллере. Изменение скорости вращения ротора двигателя происходит плавно.

Поэтому используются в нагруженных механизмах. Чем медленнее разгон, тем меньшие нагрузки будет испытывать конвейер или редуктор. Все частотники оснащены несколькими степенями защиты - по току, нагрузке, напряжению и прочими. Некоторые модели частотных преобразователей питаются от однофазного делают из него трехфазное. Это позволяет подключать асинхронные моторы дома без использования сложных схем. И не потеряется мощность при работе с таким устройством.

Для каких целей используются регуляторы

В случае с асинхронными двигателями регуляторы оборотов необходимы для:

  1. Существенной экономии электроэнергии . Ведь не в каждом механизме требуется большая скорость вращения мотора - порой ее можно уменьшить на 20-30%, а это позволит сократить расходы на электроэнергию вдвое.
  2. Защиты механизмов и электронных цепей . С помощью преобразователей частоты можно осуществлять контроль температуры, давления и многих других параметров. Если двигатель работает в качестве привода насоса, то в емкости, в которую он накачивает воздух или жидкость, нужно установить датчик давления. И при достижении максимального значения мотор просто отключится.
  3. Совершения плавного пуска . Нет необходимости использовать дополнительные электронные устройства - все можно сделать с помощью изменений настроек частотного преобразователя.
  4. Снижения расходов на техническое обслуживание . При помощи подобных регуляторов оборотов электродвигателей 220В снижается риск выхода из строя привода и отдельных механизмов.

Схема, по которой построены частотные преобразователи, широко распространена во многих бытовых приборах. Нечто подобное можно встретить в источниках бесперебойного питания, сварочных аппаратах, стабилизаторах напряжения, блоках питания компьютеров, ноутбуков, зарядниках телефонов, блоках розжига ламп подсветки современных ЖК-телевизоров и мониторов.

Как работают регуляторы вращения

Можно сделать своими руками регулятор оборотов электродвигателя, но для этого потребуется изучить все технические моменты. Конструктивно можно выделить несколько основных компонентов, а именно:

  1. Электродвигатель.
  2. Микроконтроллерную систему управления и блок преобразователя.
  3. Привод и механизмы, связанные с ним.

В самом начале работы, после подачи напряжения на обмотки, происходит вращение ротора двигателя с максимальной мощностью. Именно эта особенность отличает асинхронные машины от других. К этому прибавляется нагрузка от механизма, который приводится в движение. В итоге на начальном этапе мощность и потребляемый ток возрастают до максимума.

Выделяется очень много тепла. Перегреваются и обмотки, и провода. Применение частотного преобразователя поможет избавиться от этого. Если установить плавный пуск, то до максимальной скорости (которая также регулируется устройством и может быть не 1500 об./мин, а всего 1000) двигатель будет разгоняться не сразу, а на протяжении 10 секунд (каждую секунду по 100-150 оборотов прибавлять). При этом нагрузка на все механизмы и провода уменьшится в разы.

Самодельный регулятор

Самостоятельно можно сделать регулятор оборотов электродвигателя 12В. Для этого потребуется переключатель на несколько положений и проволочные резисторы. С помощью последних меняется напряжение питания (а вместе с ним и частота вращения). Аналогичные системы можно использовать и для асинхронных двигателей, но они менее эффективны. Много лет назад широко применялись механические регуляторы - на основе шестеренчатых приводов или вариаторов. Но они были не очень надежными. Электронные средства намного лучше себя показывают. Ведь они не такие громоздкие и позволяют более тонко настраивать привод.

Для изготовления регулятора вращения электродвигателя потребуется несколько электронных устройств, которые можно либо приобрести в магазине, либо снять со старых инверторных приборов. Неплохие результаты показывает симистор ВТ138-600 в схемах таких электронных устройств. Чтобы произвести регулировку, потребуется включить в схему переменный резистор. С его помощью изменяется амплитуда входящего на симистор сигнала.

Внедрение системы управления

Чтобы улучшить параметры даже самого простого устройства, потребуется в схему регулятора оборотов электродвигателя включить микроконтроллерное управление. Для этого нужно выбрать процессор с подходящим числом входов и выходов - для подключения датчиков, кнопок, электронных ключей. Для экспериментов можно применить микроконтроллер AtMega128 - самый популярный и простой в использовании. В свободном доступе можно найти множество схем с использованием этого контроллера. Самостоятельно их отыскать и применить на практике не составит труда. Чтобы он правильно работал, потребуется в него записать алгоритм - отклики на определенные действия. Например, при достижении температуры в 60 градусов (замер происходит на радиаторе прибора) должно произойти отключение питания.

В заключение

Если решите не делать самостоятельно устройство, а приобрести готовое, то обратите внимание на основные параметры, такие как мощность, тип системы управления, рабочее напряжение, частоты. Желательно произвести расчет характеристик механизма, в котором планируется использовать регулятор напряжения электродвигателя. И не забудьте сопоставить с параметрами частотного преобразователя.

Не каждая современная дрель или болгарка оснащена заводским регулятором оборотов, и чаще всего регулировка оборотов не предусмотрена вовсе. Тем не менее, как болгарки, так и дрели построены на базе коллекторных двигателей, что позволяет каждому их владельцу, маломальски умеющему обращаться с паяльником, изготовить собственный регулятор оборотов из доступных электронных компонентов, хоть из отечественных, хоть из импортных.

В данной статье мы рассмотрим схему и принцип работы простейшего регулятора оборотов двигателя электроинструмента, и единственное условие — двигатель должен быть коллекторным — с характерными ламелями на роторе и щетками (которые порой искрят).

Приведенная схема содержит минимум деталей, и подойдет для электроинструмента мощностью до 1,8 кВт и выше, для дрели или болгарки. Похожая схема используется для регулировки оборотов в автоматических стиральных машинах, в которых стоят коллекторные высокоскоростные двигатели, а также в диммерах для ламп накаливания. Подобные схемы, в принципе, позволят регулировать температуру нагрева жала паяльника, электрического обогревателя на базе ТЭНов и т. д.

Потребуются следующие радиоэлектронные компоненты:

    Резистор постоянный R1 - 6,8 кОм, 5 Вт.

    Переменный резистор R2 - 2,2 кОм, 2 Вт.

    Резистор постоянный R3 - 51 Ом, 0,125 Вт.

    Конденсатор пленочный C1 - 2 мкф 400 В.

    Конденсатор пленочный C2 - 0,047 мкф 400 вольт.

    Диоды VD1 и VD2 - на напряжение до 400 В, на ток до 1 А.

    Тиристор VT1 - на необходимый ток, на обратное напряжение не менее 400 вольт.


В основе схемы — тиристор. Тиристор представляет собой полупроводниковый элемент с тремя выводами: анод, катод, и управляющий электрод. После подачи на управляющий электрод тиристора короткого импульса положительной полярности, тиристор превращается в диод, и начинает проводить ток до тех пор, пока в его цепи этот ток не прервется или не сменит направление.

После прекращения тока или при смене его направления, тиристор закроется и перестанет проводить ток, пока не будет подан следующий короткий импульс на управляющий электрод. Ну а поскольку напряжение в бытовой сети переменное синусоидальное, то каждый период сетевой синусоиды тиристор (в составе данной схемы) станет отрабатывать строго начиная с установленного момента (в установленной фазе), и чем меньше во время каждого периода тиристор будет открыт, тем ниже будут обороты электроинструмента, а чем, соответственно, дольше тиристор будет открыт, тем выше будут обороты.

Как видите, принцип прост. Но применительно к электроинструменту с коллекторным двигателем, схема работает хитрее, и об этом мы расскажем далее.

Итак, в сеть здесь включены параллельно: измерительная цепь управления и силовая цепь. Измерительная цепь состоит из постоянного и переменного резисторов R1 и R2, из конденсатора C1, и диода VD1. Для чего нужна эта цепь? Это делитель напряжения. Напряжение с делителя, и что важно, противо-ЭДС с ротора двигателя, складываются в противофазе, и формируют импульс для открывания тиристора. Когда нагрузка постоянна, то и время открытого состояния тиристора постоянно, следовательно обороты стабилизированы и постоянны.

Как только нагрузка на инструмент, и следовательно на двигатель, увеличивается, то величина противо-ЭДС уменьшается, поскольку обороты снижаются, значит сигнал на управляющий электрод тиристора возрастает, и открывание происходит с меньшей задержкой, то есть мощность подводимая к двигателю возрастает, увеличивая упавшие обороты. Так обороты сохраняются постоянными даже под нагрузкой.

В результате совместного действия сигналов от противо-ЭДС и с резистивного делителя, нагрузка не сильно влияет на обороты, а без регулятора это влияние было бы существенным. Таким образом при помощи данной схемы достижима устойчивая регулировка оборотов в каждом положительном полупериоде сетевой синусоиды. При средних и малых скоростях вращения этот эффект более выражен.

Однако, при повышении оборотов, то есть при повышении напряжения, снимаемого с переменного резистора R2, стабильность поддержания скорости постоянной снижается.

Лучше на этот случай предусмотреть шунтирующую кнопку SA1 параллельно тиристору. Функция диодов VD1 и VD2 - обеспечение однополупериодного режима работы регулятора, так как напряжения с делителя и с ротора сравниваются лишь в отсутствие тока через двигатель.

Конденсатор C1 расширяет зону регулирования на малых скоростях, а конденсатор C2 снижает чувствительность к помехам от искрения щеток. Тиристор нужен высокочувствительный, чтобы ток менее 100 мкА смог бы его открыть.

На основе мощного симистора BT138-600, можно собрать схему регулятора скорости вращения двигателя переменного тока. Эта схема предназначена для регулирования скорости вращения электродвигателей сверлильных машин, вентиляторов, пылесосов, болгарок и др. Скорость двигателя можно регулировать путем изменения сопротивления потенциометра P1. Параметр P1 определяет фазу запускающего импульса, который открывает симистор. Схема также выполняет функцию стабилизации, которая поддерживает скорость двигателя даже при большой его нагрузке.

Например, когда мотор сверлильного станка тормозит из-за повышенного сопротивления металла, ЭДС двигателя также уменьшается. Это приводит к увеличению напряжения в R2-P1 и C3 вызывая более продолжительное открывание симистора, и скорость соответственно увеличивается.

Регулятор для двигателя постоянного тока

Наиболее простой и популярный метод регулировки скорости вращения электродвигателя постоянного тока основан на использовании широтно-импульсной модуляции (ШИМ или PWM ). При этом напряжение питания подается на мотор в виде импульсов. Частота следования импульсов остается постоянной, а их длительность может меняться - так меняется и скорость (мощность).

Для генерации ШИМ сигнала можно взять схему на основе микросхемы NE555. Самая простая схема регулятора оборотов двигателя постоянного тока показана на рисунке:

Здесь VT1 - полевой транзистор n-типа, способный выдерживать максимальный ток двигателя при заданном напряжении и нагрузке на валу. VCC1 от 5 до 16 В, VCC2 больше или равно VCC1. Частоту ШИМ сигнала можно рассчитать по формуле:

F = 1.44/(R1*C1) , [Гц]

Где R1 в омах, C1 в фарадах.

При номиналах указанных на схеме выше, частота ШИМ сигнала будет равна:

F = 1.44/(50000*0.0000001) = 290 Гц.

Стоит отметить, что даже современные устройства , в том числе и высокой мощности управления, используют в своей основе именно такие схемы. Естественно с использованием более мощных элементов, выдерживающих большие токи.

У вас есть болгарка, но нет регулятора оборотов? Вы можете изготовить его своими руками.

Регулятор оборотов и плавный пуск для болгарки

И то и другое необходимо для надёжной и удобной работы электроинструмента.

Что такое регулятор оборотов и для чего он нужен

Это устройство предназначено для управления мощностью электродвигателя. С его помощью можно регулировать скорость вращения вала. Цифры на регулировочном колесе означают изменение частоты вращения диска.

Регулятор устанавливается не на все болгарки.

Болгарки с регулятором оборотов: примеры на фото

Отсутствие регулятора сильно ограничивает применение шлифовальной машины. Скорость вращения диска влияет на качество работы болгарки и зависит от толщины и твёрдости обрабатываемого материала.

Если скорость не регулируется, то обороты постоянно держатся на максимуме. Такой режим подходит только для твёрдых и толстых материалов, таких как уголок, труба или профиль. Причины, по которым наличие регулятора необходимо:

  1. Для тонкого металла или мягкого дерева нужна более низкая скорость вращения. Иначе кромка металла оплавится, рабочая поверхность диска замылится, а дерево почернеет от высокой температуры.
  2. Для резки минералов необходимо регулировать обороты. От большинства из них на высокой скорости откалываются мелкие кусочки и место реза становится неровным.
  3. Для полировки автомобилей не нужна самая высокая скорость, иначе лакокрасочное покрытие испортится.
  4. Чтобы поменять диск с меньшего диаметра на больший, надо уменьшить обороты. Практически невозможно удержать руками болгарку с большим диском, вращающимся на огромной скорости.
  5. Алмазные диски нельзя перегревать, чтобы не испортить поверхность. Для этого снижаются обороты.

Зачем нужен плавный пуск

Наличие такого пуска - это очень важный момент. При запуске мощного электроинструмента, подключенного к сети, происходит бросок пускового тока, который во много раз превышает номинальный ток двигателя, напряжение в сети проседает. Хотя этот бросок кратковременный, он вызывает повышенный износ щёток, коллектора двигателя и всех элементов инструмента, по которым он протекает. Это может стать причиной выхода из строя самого инструмента, особенно китайского, с ненадёжными обмотками, которые могут в самый неподходящий момент сгореть во время включения. А также идёт большой механический рывок при запуске, что ведёт к быстрому износу редуктора. Такой пуск продлевает жизнь электроинструмента и увеличивает уровень комфорта при работе.

Электронный блок в УШМ

Электронный блок позволяет объединить регулятор оборотов и плавный пуск в одно целое. Электронная схема реализована по принципу импульсно - фазового управления с постепенным увеличением фазы открытия симистора. Таким блоком могут снабжаться болгарки разной мощности и ценовой категории.

Разновидности устройств с электронным блоком: примеры в таблице

Углошлифовальные машины с электронным блоком: популярные на фото

Регулятор оборотов своими руками

Регулятор оборотов устанавливается не во все модели болгарок. Можно сделать блок для регулирования оборотов своими руками или приобрести готовый.

Заводские регуляторы оборотов болгарок: фотопримеры

Регулятор оборотов болгарок Bosh Регулятор оборотов болгарок Sturm Регулятор оборотов болгарок DWT

Такие регуляторы имеют несложную электронную схему. Поэтому создать аналог своими руками не составит особого труда. Рассмотрим, из чего собирается регулятор оборотов для болгарок до 3 кВт.

Изготовление печатной платы

Простейшая схема предствалена ниже.

Так как схема очень простая, нет смысла из-за неё одной устанавливать компьютерную программу для обработки электросхем. Тем более что для печати нужна специальная бумага. И не у всех есть лазерный принтер. Поэтому пойдём самым простым путём изготовления печатной платы.

Возьмите кусок текстолита. Отрежьте необходимый для микросхемы размер. Поверхность зашкурьте и обезжирьте. Возьмите маркер для лазерных дисков и нарисуйте схему на текстолите. Чтобы не ошибиться, сначала рисуйте карандашом. Далее, приступаем к травлению. Можно купить хлорное железо, но после него плохо отмывается раковина. Если случайно капните на одежду, останутся пятна, которые невозможно до конца вывести. Поэтому будем использовать безопасный и дешёвый метод. Подготовьте пластиковую ёмкость для раствора. Влейте перекись водорода 100 мл. Добавьте пол столовой ложки соли и пакетик лимонной кислоты до 50 г. Раствор делается без воды. С пропорциями можно экспериментировать. И всегда делайте свежий раствор. Медь должна вся стравиться. На это уходит около часа. Промойте плату под струёй колодной воды. Просверлите отверстия.

Можно сделать ещё проще. Нарисовать схему на бумаге. Приклеить её скотчем к вырезанному текстолиту и просверлить отверстия. И только после этого рисовать схему маркером на плате и травить её.

Протрите плату спирто - канифольным флюсом или обычным раствором канифоли в изопропиловом спирте. Возьмите немного припоя и залудите дорожки.

Монтаж электронных компонентов (с фото)

Подготовьте всё, что пригодится для монтажа платы:

  1. Катушка с припоем.
  2. Штырьки в плату.
  3. Симистор bta16.
  4. Конденсатор на 100 нФ.
  5. Постоянный резистор на 2 кОм.
  6. Динистор db3.
  7. Переменный резистор с линейной зависимостью на 500 кОм.

Откусите четыре штырька и впаяйте их в плату. Потом установите динистор и все остальные детали, кроме переменного резистора. Симистор припаивайте последним. Возьмите иглу и щёточку. Почистьте промежутки между дорожками, чтобы убрать возможное замыкание. Симистор свободным концом с отверстием крепится на алюминиевый радиатор для охлаждения. Мелкой наждачной бумагой зачистьте область крепления элемента. Возьмите теплопроводящую пасту марки КПТ-8 и нанесите небольшое количество пасты на радиатор. Закрепите симистор винтом и гайкой. Так как все детали нашей конструкции находятся под напряжением сети, для регулировки будем применять ручку из изолирующего материала. Оденьте её на переменный резистор. Кусочком провода соедините крайний и средний выводы резистора. Теперь к крайним выводам припаяйте два провода. Противоположные концы проводов припаяйте к соответствующим выводам на плате.

Можно весь монтаж сделать навесным. Для этого припаиваем детали микросхемы друг к другу непосредственно с использованием лапок самих элементов и проводов. Здесь тоже нужен радиатор для симистора. Его можно сделать из небольшого куска алюминия. Такой регулятор займёт очень мало места и его можно будет разместить в корпусе болгарки.

Если захотите установить светодиодный индикатор в регулятор оборотов, то используйте другую схему.

Схема регулятора со светодиодным индикатором.

Здесь добавлены диоды:

  • VD 1 - диод 1N4148;
  • VD 2 - светодиод (индикация работы).

Регулятор со светодиодом в собранном виде.

Этот блок рассчитан для маломощных болгарок, поэтому симистор не установлен на радиатор. Но если вы будете использовать его в мощном инструменте, то не забудьте про алюминиевую плату для теплоотдачи и симистор bta16.

Изготовление регулятора мощности: видео

Испытание электронного блока

Перед подключением блока к инструменту испытаем его. Возьмите накладную розетку. Вмонтируйте в неё два провода. Один из них подключите к плате, а второй к сетевому кабелю. У кабеля остался ещё один провод. Его подключите к сетевой плате. Получается, что регулятор включён последовательно в цепь питания нагрузки. Подключите к цепи лампу и проверьте работу прибора.

Тестирование регулятора мощности тестером и лампой (видео)

Подключение регулятора к болгарке

Регулятор оборотов подключается к инструменту последовательно.

Схема подключения указана ниже.

Если в рукоятке болгарки есть свободное место, то туда можно поместить наш блок. Схема, собранная навесным монтажом, приклеивается эпоксидной смолой, которая служит изолятором и защитой от тряски. Переменный резистор с пластмассовой ручкой выведите наружу, чтобы регулировать обороты.

Установка регулятора внутрь корпуса углошлифовальной машины: видео

Электронный блок, собранный отдельно от болгарки, помещается корпус из изоляционного материала, так как все элементы находятся под напряжением сети. К корпусу прикручивается переносная розетка с сетевым кабелем. Наружу выводится ручка переменного резистора.

Регулятор включается в сеть, а инструмент в переносную розетку.

Регулятор оборотов для болгарки в отдельном корпусе: видео

Использование

Существует ряд рекомендаций для правильного использования болгарки с электронным блоком. При запуске инструмента дайте ему разогнаться до установленных оборотов, не спешите резать что-либо. После выключения повторно запускайте его через несколько секунд, чтобы успели разрядиться конденсаторы в схеме, тогда повторный пуск будет плавным. Регулировать скорость можно во время работы болгарки, медленно поворачивая ручку переменного резистора.

Болгарка без регулятора оборотов хороша тем, что без серьёзных затрат вы можете сами сделать универсальный регулятор оборотов для любого электроинструмента. Электронный блок, вмонтированный в отдельную коробку, а не в корпус шлифовальной машины, можно использовать для дрели, бормашины, циркулярной пилы. Для любого инструмента с коллекторным двигателем. Конечно, удобнее, когда ручка регулятора находится на инструменте, и не нужно никуда отходить и наклоняться, чтобы её повернуть. Но тут уже вам решать. Это дело вкуса.

24.02.2016

Please enable JavaScript to view the comments powered by Disqus.

Позволяет управлять двигателями без потери мощности.Обязательным условием при этом является наличие таходатчика (тахогенератор) на электродвигателе, который позволяет обеспечить обратную связь мотора с платой регулировки, а именно с микросхемой. Если говорить более простым языком, что бы было понятно всем, происходит примерно следующее. Мотор вращается с каким-то количеством оборотов, а установленный таходатчик на валу электромотора эти показания фиксирует. Если вы начинаете нагружать двигатель, частота вращения вала естественно начнет падать, что так же будет фиксировать таходатчик. Теперь рассмотрим дальше. Сигнал с этого таходатчика поступает на микросхему, она видит это и дает команду силовым элементам, добавить напряжение на электромотор.Таким образом, когда вы надавили на вал (даете нагрузку), плата автоматически прибавила напряжение и мощность на этом валу возросла. И наоборот, отпусти вал двигателя (сняли с него нагрузку), она увидела это и убавила напряжение. Таким образом обороты остаются не низменными, а момент силы (крутящий момент)постоянным. И самое что важное, вы можете регулировать частоту вращения ротора в широком диапазоне, что очень удобно в применении и конструировании различных устройств. Поэтому этот продукт, так и называется "Плата регулировки оборотов коллекторных двигателей без потери мощности".

Но мы увидели одну особенность, что эта плата применима только для коллекторных электродвигателей (с электрическими щетками). Конечно такие моторы в быту встречаются намного реже чем асинхронные. Но они нашли широкое применение в стиральных машинах автомат. Вот именно по этому была изготовлена эта схема. Специально для электродвигателя от стиральной машины автомат. Их мощность достаточно приличная, от 200 до 800 ватт. Что позволяет достаточно широко применить их в быту.

Данный продукт, уже нашел широкое применение в хозяйстве людей и широко охватил лиц занимающихся различным хобби и профессиональной деятельностью.

Отвечая на вопрос - Куда можно применить двигатель от стиральной машины? Был сформирован некоторый список. Самодельный токарный станок по дереву; Гриндер; Электропривод для бетономешалки; Точило; Электропривод для медогонки; Соломорезка; Самодельный гончарный круг; Электрическая газонокосилка; Дровокол и много другое где необходимо механическое вращение каких либо механизмов или предметов. И во всех этих случаях нам помогает эта плата "Регулировки оборотов электродвигателей с поддержанием мощности на TDA1085".

Краш-тест платы регулировки оборотов

Позволяет управлять двигателями без потери мощности.Обязательным условием при этом является наличие таходатчика (тахогенератор) на электродвигателе, который позволяет обеспечить обратную связь мотора с платой регулировки, а именно с микросхемой. Если говорить более простым языком, что бы было понятно всем, происходит примерно следующее. Мотор вращается с каким-то количеством оборотов, а установленный таходатчик на валу электромотора эти показания фиксирует. Если вы начинаете нагружать двигатель, частота вращения вала естественно начнет падать, что так же будет фиксировать таходатчик. Теперь рассмотрим дальше. Сигнал с этого таходатчика поступает на микросхему, она видит это и дает команду силовым элементам, добавить напряжение на электромотор.Таким образом, когда вы надавили на вал (даете нагрузку), плата автоматически прибавила напряжение и мощность на этом валу возросла. И наоборот, отпусти вал двигателя (сняли с него нагрузку), она увидела это и убавила напряжение. Таким образом обороты остаются не низменными, а момент силы (крутящий момент)постоянным. И самое что важное, вы можете регулировать частоту вращения ротора в широком диапазоне, что очень удобно в применении и конструировании различных устройств. Поэтому этот продукт, так и называется "Плата регулировки оборотов коллекторных двигателей без потери мощности".

Но мы увидели одну особенность, что эта плата применима только для коллекторных электродвигателей (с электрическими щетками). Конечно такие моторы в быту встречаются намного реже чем асинхронные. Но они нашли широкое применение в стиральных машинах автомат. Вот именно по этому была изготовлена эта схема. Специально для электродвигателя от стиральной машины автомат. Их мощность достаточно приличная, от 200 до 800 ватт. Что позволяет достаточно широко применить их в быту.

Данный продукт, уже нашел широкое применение в хозяйстве людей и широко охватил лиц занимающихся различным хобби и профессиональной деятельностью.

Отвечая на вопрос - Куда можно применить двигатель от стиральной машины? Был сформирован некоторый список. Самодельный токарный станок по дереву; Гриндер; Электропривод для бетономешалки; Точило; Электропривод для медогонки; Соломорезка; Самодельный гончарный круг; Электрическая газонокосилка; Дровокол и много другое где необходимо механическое вращение каких либо механизмов или предметов. И во всех этих случаях нам помогает эта плата "Регулировки оборотов электродвигателей с поддержанием мощности на TDA1085".

Краш-тест платы регулировки оборотов

Поддержите проект — поделитесь ссылкой, спасибо!
Читайте также
Цветы: к чему снится сон Цветы: к чему снится сон К чему приснилась ведьма? К чему приснилась ведьма? К чему увидеть крысу во сне — толкования сонников К чему увидеть крысу во сне — толкования сонников